3.1.80 \(\int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx\) [80]

3.1.80.1 Optimal result
3.1.80.2 Mathematica [A] (verified)
3.1.80.3 Rubi [A] (verified)
3.1.80.4 Maple [B] (verified)
3.1.80.5 Fricas [A] (verification not implemented)
3.1.80.6 Sympy [F]
3.1.80.7 Maxima [B] (verification not implemented)
3.1.80.8 Giac [A] (verification not implemented)
3.1.80.9 Mupad [F(-1)]

3.1.80.1 Optimal result

Integrand size = 33, antiderivative size = 117 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {\sqrt {a} (3 A+4 B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}+\frac {a (3 A+4 B) \tan (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a A \sec (c+d x) \tan (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}} \]

output
1/4*(3*A+4*B)*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))*a^(1/2)/d 
+1/4*a*(3*A+4*B)*tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+1/2*a*A*sec(d*x+c)*ta 
n(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)
 
3.1.80.2 Mathematica [A] (verified)

Time = 0.57 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.86 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {\sqrt {a (1+\cos (c+d x))} \left (3 \sqrt {2} (3 A+4 B) \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \sec \left (\frac {1}{2} (c+d x)\right )+6 (2 A+(3 A+4 B) \cos (c+d x)) \sec ^2(c+d x) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{24 d} \]

input
Integrate[Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x])*Sec[c + d*x]^3,x]
 
output
(Sqrt[a*(1 + Cos[c + d*x])]*(3*Sqrt[2]*(3*A + 4*B)*ArcTanh[Sqrt[2]*Sin[(c 
+ d*x)/2]]*Sec[(c + d*x)/2] + 6*(2*A + (3*A + 4*B)*Cos[c + d*x])*Sec[c + d 
*x]^2*Tan[(c + d*x)/2]))/(24*d)
 
3.1.80.3 Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.93, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {3042, 3459, 3042, 3251, 3042, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^3(c+d x) \sqrt {a \cos (c+d x)+a} (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \sin \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx\)

\(\Big \downarrow \) 3459

\(\displaystyle \frac {1}{4} (3 A+4 B) \int \sqrt {\cos (c+d x) a+a} \sec ^2(c+d x)dx+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} (3 A+4 B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {1}{4} (3 A+4 B) \left (\frac {1}{2} \int \sqrt {\cos (c+d x) a+a} \sec (c+d x)dx+\frac {a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} (3 A+4 B) \left (\frac {1}{2} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {1}{4} (3 A+4 B) \left (\frac {a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {a \int \frac {1}{a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}\right )+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{4} (3 A+4 B) \left (\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\)

input
Int[Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x])*Sec[c + d*x]^3,x]
 
output
(a*A*Sec[c + d*x]*Tan[c + d*x])/(2*d*Sqrt[a + a*Cos[c + d*x]]) + ((3*A + 4 
*B)*((Sqrt[a]*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d 
+ (a*Tan[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]])))/4
 

3.1.80.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3251
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e 
+ f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] + Sim 
p[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2)))   Int[Sqrt[a + b*Sin[e 
+ f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3459
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1) 
*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b* 
c - 2*a*d*(n + 1)))/(2*d*(n + 1)*(b*c + a*d))   Int[Sqrt[a + b*Sin[e + f*x] 
]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1]
 
3.1.80.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(935\) vs. \(2(101)=202\).

Time = 5.24 (sec) , antiderivative size = 936, normalized size of antiderivative = 8.00

method result size
parts \(\text {Expression too large to display}\) \(936\)
default \(\text {Expression too large to display}\) \(1003\)

input
int((a+cos(d*x+c)*a)^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x,method=_RETURNV 
ERBOSE)
 
output
1/2*A*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*a*(ln(4/(2*cos 
(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2* 
d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))+ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^ 
(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)- 
2*a)))*sin(1/2*d*x+1/2*c)^4+(-12*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^ 
(1/2)-12*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c) 
+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a-12*ln(-4/(2*cos(1/ 
2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x 
+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)*sin(1/2*d*x+1/2*c)^2+10*2^(1/2)*(a*sin(1 
/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+3*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1 
/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2* 
a))*a+3*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c) 
-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)/a^(1/2)/(2*cos(1/ 
2*d*x+1/2*c)-2^(1/2))^2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))^2/sin(1/2*d*x+1/2*c 
)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d+B*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2 
*c)^2)^(1/2)*(-2*a*(ln(2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2 
*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))+ln(-2/(2* 
cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1 
/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a)))*sin(1/2*d*x+1/2*c)^2+2*2^(1/2)*(a*si 
n(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+ln(-2/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*...
 
3.1.80.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.52 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {{\left ({\left (3 \, A + 4 \, B\right )} \cos \left (d x + c\right )^{3} + {\left (3 \, A + 4 \, B\right )} \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left ({\left (3 \, A + 4 \, B\right )} \cos \left (d x + c\right ) + 2 \, A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{16 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \]

input
integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorith 
m="fricas")
 
output
1/16*(((3*A + 4*B)*cos(d*x + c)^3 + (3*A + 4*B)*cos(d*x + c)^2)*sqrt(a)*lo 
g((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt 
(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^ 
2)) + 4*((3*A + 4*B)*cos(d*x + c) + 2*A)*sqrt(a*cos(d*x + c) + a)*sin(d*x 
+ c))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2)
 
3.1.80.6 Sympy [F]

\[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\int \sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \left (A + B \cos {\left (c + d x \right )}\right ) \sec ^{3}{\left (c + d x \right )}\, dx \]

input
integrate((a+a*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)**3,x)
 
output
Integral(sqrt(a*(cos(c + d*x) + 1))*(A + B*cos(c + d*x))*sec(c + d*x)**3, 
x)
 
3.1.80.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3352 vs. \(2 (101) = 202\).

Time = 3.24 (sec) , antiderivative size = 3352, normalized size of antiderivative = 28.65 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\text {Too large to display} \]

input
integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorith 
m="maxima")
 
output
1/16*((3*(log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt 
(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos 
(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1 
/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 
 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*s 
in(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 
1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) 
 + 2))*cos(4*d*x + 4*c)^2 + 12*(log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d 
*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1 
/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*s 
qrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2* 
cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x 
+ 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c 
)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2 
)*sin(1/2*d*x + 1/2*c) + 2))*cos(2*d*x + 2*c)^2 + 3*(log(2*cos(1/2*d*x + 1 
/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sq 
rt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2 
*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 
 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2 
*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - l...
 
3.1.80.8 Giac [A] (verification not implemented)

Time = 0.35 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.67 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=-\frac {\sqrt {2} {\left (\sqrt {2} {\left (3 \, A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 4 \, B \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) + \frac {4 \, {\left (6 \, A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 8 \, B \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 5 \, A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 4 \, B \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}\right )} \sqrt {a}}{16 \, d} \]

input
integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorith 
m="giac")
 
output
-1/16*sqrt(2)*(sqrt(2)*(3*A*sgn(cos(1/2*d*x + 1/2*c)) + 4*B*sgn(cos(1/2*d* 
x + 1/2*c)))*log(abs(-2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 
4*sin(1/2*d*x + 1/2*c))) + 4*(6*A*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 
1/2*c)^3 + 8*B*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 - 5*A*sgn( 
cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c) - 4*B*sgn(cos(1/2*d*x + 1/2*c)) 
*sin(1/2*d*x + 1/2*c))/(2*sin(1/2*d*x + 1/2*c)^2 - 1)^2)*sqrt(a)/d
 
3.1.80.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^3} \,d x \]

input
int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^3,x)
 
output
int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^3, x)